
COMPUTER_sYS-TEMS
I

LABORATORY

-/j ./r',.

STANFORDUNIVERSITY• STANFORD,CA 94305-4055

_.:.:_..... _._:.

__e: ....

I

Sparse Distributed Memory Prototype:

Principles of Operation

M. J. Flynn, P. Kanerva, B. Ahanin

N. Bhadkamkar, P. Flaherty, P. Hickey

Technical Report CSL-TR-87-338

February 1988

This research is supported by NASA under contract NAGW 419, in cooperation

with KIACS (Ames Research Center).

4_ASA-C_- 1 _ ¢

{._tanfc[d gciv.) _5 _ CSC_ 09B

G3/b I

N89- 3977

Unclas

0175200





Sparse Distributed Memory Prototype:

Principles of Operation

by

M. J. Flynn, P. Kanerva, B. Ahanin

N. Bhadkamkar, P. Ftaherty, P. Hickey

Technical Report CSL-TR-87-338

February 1988

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305-4055

Abstract

Sparse distributed memory is a generalized random-access memory (tLhl_[)

for long (e.g., 1,000 bit) binary words. Such words can be written into and read

from the memory, and they can also be used to address the memory. The main
attribute of the memory is sensitivity to similarity, meaning that a word can

be read back not only by giving the original write address but also by giving
one close to it as measured by the Hamming distance between addresses.

Large memories of this kind are expected to have wide use in speech and

scene analysis, in signal detection and verification, and in adaptive control of

automated equipment--in general, in dealing with real-world information in
real time.

The memory can be realized as a simple, massively parallel computer. Dig-

ital technology has reached a point where building large memories is becoming

practical. This research project is aimed at resolving major design issues that

have to be faced in building the memories. This report describes the design of

a prototype memory with 256-bit addresses and from 8K to 128K locations for

256-bit words. A key aspect of the design is extensive use of dynamic RAM

and other standard components.

Key Words and Phrases: Neural networks, pattern recognition, adaptive control.



Copyright Q 1988

by

Michael J. Flynn, Pentti Kanerva, Bahrain Ahanin

Neal Bhadkamkar, Paul Flaherty, Philip Hickey



Contents

Introduction to Sparse Distributed Memory 1

1.1 Introduction .................................. 1

1.2 Rationale for special hardware ....................... 2

1.3 Basic concepts and terminology ....................... 3

1.3.1 Distance from a memory location .................. 4

1.4 Basic concepts ................................ 5

1.4.1 A simple example .......................... 5

1.4.2 A simple solution that does not work ................ 8

1.4.3 The SDM solution .......................... 8

1.4.4 Differences between the simple example and the real model . . . 11

1.5 Autoassociative dynamics .......................... 13

1.6 Heteroassociative dynamics (sequences) .................. 16

1.6.1 Folds .................................. 20

Description of the Prototype

2.1

2.2

2.3

22

Physical description ............................. 23

Functional description: ............................ 25

2.2.1 How the Address and Stack modules implement SDM locations . 25

Operational description ........................... 27

2.3.1 Set-up ................................. 27

2.3.2 Operation ............................... 27

iii



CONTENTS

2.4 Summary . .................................. 31

3 Hardware Description

3.1 The Executive module ............................

3.2

3.3

3.4

The

The

The

3.4.1

3.4.2

3.4.3

3.4.4

32

32

Control module ............................. 34

Stack module .............................. 35

Address module ............................. 36

Overview and board floorplan of Address module ......... 36

The clock/sequencer ......................... 39

The hard azldress memory ...................... 44

The ALU ....... . ....................... 44

3.4.5

3.4.6

3.4.7

3.4.8

3.4.9

The bit counter ............................ 44

The tag cache ............................. 45

The bus interface ........................... 45

Operation of the Address module .................. 45

Additional hardware ......................... 47

3.5 Summary ................................... 47

4 Software Design

4.1

4.2

50

Introduction .................................. 50

Overview ................................... 50

4.2.1

4.2.2

4.2.3

4.2.4

Executive module ..........................

Control module ............................

Address module ...........................

S taz.k module .............................

4.3 Software operation ..............................

4.4 Summary ...................................

52

52

52

52

53

70

A Memory Maps and Language Code 71

A.I Stack Module ................................. 71



CONTENTS

A.1.1

A.1.2

A.1.3

A.1.4

A.2

Stack memory map .......................... 71

Stack module code .......................... 75

Explanation of code ......................... 77

Use of 68000 registers ........................ 78

Controller Module ............................... 78

A.2.1 Controller memory map ....................... 78

A.2.2 Controller module code ....................... 85





List of Figures

1.1 Example of a location ............................. 6

1.2 Example of a location ............................. 7

1.3 Example using SDM ....... ....................... 9

1.4 Example using SDM .............................. 10

1.5 Example using SDM .............................. 10

1.6 Example of data selection in SDM ...................... 12

1.7 Space of locations ............................... 14

1.8 SDM storage activation radius ........................ 14

1.9 SDM retrieval activation radius ........................ 14

1.10 Overlapping radii ............................... 15

1.11 SDM autoassociative mode .......................... 17

1.12 SDM heteroassociative mode: storage .................... 19

1.13 SDM heteroassociative mode: retrieval ................... 19

1.14 Folds ...................................... 21

2.1 Physical and block diagrams of SDM prototype ............... 24

2.2 Relation between Address and Stack modules ................ 26

2.3 Physical arrangement of hard addresses in Address module ........ 26

2.4 What the Stack module does during a write operation ........... 29

2.5 How the Stack module accumulates the contents of locations selected by

the Address module ..............................

3.1 Floorplan ....................................

30

40

vi



LIST OF FIGURES

3.2 Global signals of the Address module .................... 41

3.3 State-transition diagram of Address module ................. 42

3.4 Timing diagram of Address module ..................... 43

3.5 Address module block ............................. 48

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Module arrangement .............................. 51

Start-up window ................................ 53

Software operation and module communication ............... 54

Executive software breakdown ........................ 56

Normal mode screen .............................. 61

Process normal mode command ....................... 62

Controller module operation ......................... 63

Address module operation .......................... 64

Stack module operation ............................ 65

Memory debug mode screen ......................... 66

Register debug mode screen .......................... 67

Process memory debug command ...................... 68

Process register debug command ....................... 69

A.1 Stack module memory map .......................... 72

A.2 Memory map for the Stack module DPR .................. 74

A.3 Communications paths between Control module and the rest of the sys-
tem ....................................... 79

A.4 Controller module memory map ....................... 80

A.5 Breakdown of the VME Address Space (4GB) ............... 81

A.6 Breakdown of Controller DPR ........................ 82

A.7 SCSI Registers ................................. 84

vii



List of Tables

1.1 Realizing sparse distributed memory in different kinds of hardware .... 3

2.1 Parameters of SDM prototype ........................ 22

2.2 Hardware and software components for prototype system ......... 23

4.1 Explanation of terms ............................. 55

4.2 Command register descriptions ........................ 58

4.3 Normal mode screen functions ........................ 59

4.4 Debug mode screen functions ......................... 60

viii





Chapter 1

Introduction to Sparse

Distributed Memory

1.1 Introduction

Sparse distributed memory (SDM) is a generalized random-access memory (RAM) for

long (e.g., 1,000 bit) binary words. These words serve as both addresses to and data

for the memory. The main attribute of the memory is sensitivity to similarity, meaning

that a word can be read back not only by giving the original write address but also by

giving one close to it, as measured by the number of mismatched bits (i.e., the Harnming

distance between addresses).

The theory of the memory is mathematically complete and has been verified by

computer simulation. It arose from the observation that the distances between points

of a high-dimensional space resemble the proximity relations between concepts in human

memory. The theory is also practical in that memories based on it can be implemented

with conventional RAM-memory elements. The memory array in the prototype memory

makes extensive use of 1 M-bit DRAM technology, with array modules in concurrent

execution. Consequently, the prototype is inexpensive compared to implementations of

the memory on systolic-array, "connection machine," or general-purpose equipment.

In applications of the memory, the words are patterns of features. Some features

are produced by a sensory system, others control a motor system, and the rest have

no immediate external significance. There is a current (1,000 bit) pattern, which is

the current contents of the system's .focus. The sensors feed into the focus, the motors

are driven from the focus, and the memory is accessed through the focus. What goes

on in the world--the system's "subjective" experience--is represented internally by a



2 CHAPTER 1. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

sequence of patterns in the focus. The memory stores this sequence and can recreate

it later in the focus if addressed with a pattern similar to one encountered in the past.

Thus, the memory learns to predict what is about to happen.

Wide applications of the memory would be in systems that den with real-world
information in real time. Such information is rich, varied, incomplete, unpredictable,

messy, and dynamic. The memory will home on the regularities in the information and

will base its decision on them. The applications include vision---detecting and identi-

fying objects in a scene and anticipating subsequent scenes--robotics, signal detection

and verification, and adaptive learning and control. On the theoretical side, the working

of the memory may help us understand memory and learning in humans and animals.

For an example, the memory should work well in transcribing speech, with the train-

ing consisting of "listening" to a large corpus of spoken language. Two hard problems

with natural speech are how to detect word boundaries and how to adjust to different

speakers. The memory should be able to handle both. First, it stores sequences of pat-

terns as pointer chains. In training--in listening to speech--it will build a probabilistic

structure with the highest incidence of branching at word boundaries. In transcribing

speech, these branching points are detected and tend to break the stream into segments

that correspond to words. Second, the memory's sensitivity to similarity is its mecha-

nism for adjusting to different speakers--and to the variations in the voice of the same

speaker.

1.2 Rationale for special hardware

Although the sparse distributed memory is a generalized random-access memory, its

most important properties are not demonstrated by ordinary random accesses. For

those properties to appear, the memory addresses must be at least 100 bits and prefer-

ably several hundred, and any read or write operation must manipulate many memory

locations. When these conditions are met, the memory can use approximate addresses

(in the Hamming-distance sense) to retrieve exact information as well as statistically

abstracted information that represents natural groupings of the input data. Intelligence

in natural systems is founded on such properties.

Simulation of the memory on a conventional computer is extremely slow. A properly

designed, highly parallel hardware is absolutely necessary for dealing with practical

problems in real time. Table 1.1 shows the estimated performance of different sized

memories on a range of hardware implementations.

The Stanford prototype is designed to be a flexible, low-cost model of projected

large-scale implementations. Experiments performed with the prototype are intended



1.3. BASIC CONCEPTS AND TERMINOLOGY 3

to develop better applications support and especially faster, more efficient implementa-
tions.

Table 1.1: Realizing sparse distributed memory in different kinds of hardware.

Dimension, Number of Cycles

Hardware n locations, m per second Task

Dedicated DEC 2060 128 10,000 .2-1 Demonstrate con-

vergence properties

of the memory

32-node Intel iPSC 128 50,000 1-5 Simple learning by
trial and error

16K-processor 200 60,000 50-200 Word parsing in

Connection Machine compacted text

Stanford Prototype 256 80,000 50 Word parsing in

compacted text and

possibly in speech

Present VLSI potential 1,000 100,000,000 1,000 Language

understanding (?)

1.3 Basic concepts and terminology

This chapter presents a nonmathematical description of the operating principles behind

SDM. Readers desiring a mathematical description of these concepts should consult the

paper by Kanerva [3]. The papers by Keeler [4] and Chou [1] contrast the properties

of SDM with a neural-network model developed by Hopfield [2] that resembles SDM in

certain aspects of its operation.

There are six concepts that are central to describing the behavior of SDM. These
are:

• writing to the memory

• reading from the memory

• address pattern (or reference address, or retrieval cue, or cue)

• data pattern (or contents, or data word)

• memory location (or hard location) and hard address



4 CHAPTER 1. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

• distance from a memory location

The first two are operations on the memory, the middle two are external to the

memory and have to do with the external world, while the last two are concepts relating

to the internal aspects of the memory. Each of these is explained in more detail below.

Writing is the operation of storing a data pattern into the memory using a particular

address pattern.

Reading is the operation of retrieving a data pattern from the memory using a pax-

ticular address pattern.

Address Pattern. An N-bit vector used in writing to and reading from the memory.

The address pattern is a coded description of an environmental state. (In the

prototype, N = 256.)

Data Pattern. An M-bit vector that is the object of the writing and reading oper-

ations. Like the address pattern, it is a coded description of an environmental

state. (In the prototype, M = 256.)

Memory location. SDM is designed to cope with address patterns that span an enor-

mous address space. For example, with N = 256 the input address space is 2256.

SDM assumes that the address patterns actually describing physical situations

of interest are sparsely scattered throughout the input space. It is impossible to

reserve a separate physical location corresponding to each possible input; SDM

implements only a limited number of physical or "hard"' locations. The physical

location is called a memory (or hard) location.

Every hard location has associated with it two items:

• a fixed hard address, which is the N-bit address of the location.

• a contents portion that is M-bits wide and that can accumulate multiple
M-bit data patterns written into the location. The contents' portion is not

fixed; it is modified by data patterns written into the memory.

1.3.1 Distance from a memory location (to the reference address)

The distance from a memory location to a reference address used in either a read or

write operation is the Hamming distance between the memory location's hard address

and the reference address. The Hamming distance between two N-bit vectors is the

number of bit positions in which the two differ, and can range from 0 to N. SDM uses



1.4. BASIC CONCEPTS 5

the Hamming measure for distance because it is convenient for vectors consisting of Os

and ls. However, other measures could equaJ.ly well be used.

The operation of the memory is explained in the remainder of this chapter. However.

the following is a brief preview:

During a write, the input to the memory consists of an address pattern and a

data pattern. The address pattern is used to select hard locations whose hard

addresses are within a certain cutoff distance from the address pattern. The data

pattern is stored into each of the selected locations.

During a read, an address pattern is used to select a certain number of hard

locations (just like during a write). The contents of the selected locations are

bitwise summed and thresholded to derive an M-bit data pattern. This serves as

the output read from the memory.

How this works is explained below.

1.4 Basic concepts

1.4.1 A simple example

These concepts and the basic mechanisms of SDM will be illustrated by a stylized

example. For the sake of simplicity, assume the following:

1. Input vectors consist of

(a) an integer address that can range from 1 to 1000, and

(b) a data pattern (or content portion) that is an 8-bit vector.

An example of an input vector is: Address Data pattern
867 01101010

It should be emphasized that the data pattern is not a binary number. Rather,

the ls and 0s could be thought of as the presence or absence of specific features.
In the actual implementation, described later, both the address and contents are

256-bit patterns.

2. The memory in this example implements only 99 hard locations. These have
associated with them the addresses

5.5, 15.5, 25.5, ..., 995.5



6 CHAPTER I. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

location address

counters associated with the location

Figure 1.1: Example of a location.

.

The reason for the half addresses is merely to position each location symmetrically

between 1 and 10. The need for this will be clear shortly.

Each hard location has associated with it 8 buckets--one bucket for each bit of

an 8-bit data-pattern vector. Each bucket accumulates bits that are stored into it

by acting as an up/down counter. Each bucket starts out holding the value 0. A

binary 1 stored into the bucket causes its count to go up by 1, whereas a binary

0 stored into a bucket causes its count to go down by 1.

As will be explained shortly, this facility is required because each location may

have many inputs stored into it.

An example of a location is shown in Figure 1.1. If an input vector with contents

1 0 0 1 0 0 I 1 is stored into this location, the location will look as shown in the

upper half of Figure 1.2. If now another input vector with contents 1 0 0 0 0 0

1 1 is stored into the same location, the result is shown in the lower half of that

figure.

The contents of an individual location could be interpreted as follows. If a bucket

has a count that is positive, it has had more ls written into it than 0s and can be

interpreted as a 1. Similarly, a bucket with a negative count can be interpreted

as a 0. A bucket with a 0 count (in a location that has been written into) has had

an equal number of ls and 0s written into it and can be interpreted as a 1 or a 0,

each with probability 0.5.

To understand the working of SDM, we will deal with the problem of retrieving

the closest match. We want to store into memory the input vectors that the system



1.4. BASIC CONCEPTS 7

contents of first input vector

I I
0 0 I 0 0 I I

.I.
contents of second input vector

I I 0 0 0 0 0 I I i

Figure 1.2: Example of a location.



8 CHAPTER 1. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

encounters. At some later point, we want to present to the memory an address cue and

have the memory retrieve the contents of the stored input vector with the address that

is closest to the input cue.

1.4.2 A. simple solution that does not work

An apparently simple way in which this best-match problem could be tackled is the

following: Store each input into the closest hard location. This can be accomplished

by making each hard location "sensitive" or addressable by any input with an address

that is within =t:4.5 of the address of the location. Thus, any input with an address in

the range 31 to 40 (both inclusive) would be stored into the location with the address

of 35.5. Then, when presented with a retrieval cue, read out the contents of the closest

hard location. Unfortunately, though this works sometimes, it often does not. To see

this, consider the example below:

Input #1: 139 10 101010

Input #2: 169 11001 0 1 1
Retrieval cue: 150

Input #1 will be stored into the location with address 135.5. Input #2 will be stored
into the location with address 165.5. The retrieval cue will activate the location 155.5.

This location has nothing in it. One way to deal with this problem is to gradually

increase the activation distance during retrieval. In the above case, if the activation

distance were increased to =t=14.5, the system would retrieve the contents of the location

135.5, which contains the closest match. However, if the example is modified slightly
so that the first input address is 131 and the second is 161, the method fails even after

the activation range has been increased to 150 :t=14.5. SDM solves the problem using a

statistical approach that is much more robust and has fairly simple mechanics.

1.4.3 The SDM solution

SDM overcomes the above problem by

1. distributing each stored input over many locations, and

2. retrieving from a distributed set of locations.

This is the reason for the word "distributed" in the name of the system. Now, instead

of storing an input into the closest location, an input is stored into all locations within a

certain distance of the write address. Similarly, when _resented with a retrieval cue, all



1.4. BASIC CONCEPTS 9

Figure 1.3: Example using SDM.

locations within a certain distance of the retrieval cue are read out and used to derive

the output in a manner to be described. These two distances, namely, the activation

distances during the storage and retrieval of patterns, need not be the same. The

operation of SDM can be illustrated by continuing with the previous example. Instead

of having each physical location be addressable by any address within 4-4.5 of it, assume

that the activation distance is now 4-25. We will use the same activation distance during

both the storage and retrieval phases, for simplicity. Figure 1.3 illustrates the initial

state of a portion of the system, encompassing physical locations with addresses ranging

from 105.5 to 195.5. Also shown is the range of a_ldresses to which each location is
sensitive.

When the memory is presented with the first input pattern, 139:1 0 1 0 1 0 1 0, the

memory locations with addresses 115.5, 125.5, 135.5, 145.5, and 155.5 are all activated.

The contents of the input vector are written into each of the locations according to the

rule described earlier. Figure 1.4 shows the state of the system after this occurs.

Now the system is presented with Input #2, namely 169:1 1 0 0 1 0 1 1. This input

activates the locations with addresses 145.5, 155.5, 165.5, 175.5, and 185.5. The vector

being stored, 1 1 0 0 1 0 1 1, is accumulated, bit by bit, into the buckets of each of these



10 CHAPTER I. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

Location
address

f

Locatlon

contents

A

105.5)

(,,,._)

155.5)

C,o,.,)
C,,,._)

Location
address

f

Figure 1.4: Example using SDM.

Location

contents

A

Input #I, with

address 139,

Is written

Into each of

those

locations

CI 05,5)

CI75.5)

(185.5)
{,,,.,)

Figure 1.5: Example using SDM.

%

Input #2, wlth

address 169,

• Is written

Into each of

these

., locations



1.4. BASIC CONCEPTS 11

locations. The resulting state of the system is presented in Figure 1.5. Notice that the

two locations at addresses 145.5 and 155.5 have each had both input vectors written

into them. Both input vectors fell within the 4-25 activation distance of each of these
locations.

Now consider what happens when the system is presented with the retrieval cue 150.

This address activates all locations with addresses in the range 150 4- 25, namely, the

locations with addresses 125.5,135.5, 145.5, 155.5, and 165.5. The retrieval mechemism's

goal is to determine, for each bit position, whether more Is or more 0s were written into

all the selected locations and to output 1 or 0 accordingly. In the case of a tie, 1 or 0 is

output with probability 0.5.

The way this works is illustrated in Figure 1.6. For each bit position, the following

operations are performed:

1. The contents of the buckets of all the selected locations are summed arithmetically.

(A positive sum indicates that more ls were written into these locations, while a

negative sum indicates more Os.)

2. The sum is thresholded.

A positive sum yields 1, a negative sum yields 0, and a sum of 0 yields 1 or 0 based

on the toss of a coin. In this particular case, this process yields the output 1 0 1 0

1 0 1 0. This is the system's response to the query "What is the content portion of

the stored input with the address closest to the retrieval cue of 1507". Notice that the

vector output by the system is in fact the content portion of Input #1, which was the

stored input vector with the closest address to 150, the retrieval cue.

1.4.4 Differences between the simple example and the real model

The simplified model presented above was sufficient to explain some of the basic mech-

anisms of SDM. However, to understand the workings of the model in more depth we

switch now to a discussion based on the real model. In the simple model above, input

vectors consisted of an address portion that was a three digit integer, while the contents

were an 8-bit vector. Distances between input vectors were measured by the magnitude
of the arithmetic difference between addresses. In the actual model, input vectors have

an address consisting of an N-bit vector and a contents portion consisting of an M-bit

vector. N and M need not be the same in the most general case, but they axe both

256 in the prototype we are implementing. This equality is required for certain modes

of operation, described later in this report. Distances between vectors are measured by

the Hamming distance between the N-bit vectors. Since the Hamming distance is the



12 CHAPTER I. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

105.5)

I 75.5]

The retrlouol

CUB, with

address 150,

_ activates
each of

these
i locations.

J

Those are

then
processed

t

Contents of
selected

locations

Sum ouch

bit position

Threshold

the sum

RETRIEVED
VECTOR

Figure 1.6: Example of data selection in SDM.



1.5. A UTOASSOCIATIVE DYNAMICS 13

number of bit positions in which the two vectors differ, for N-bit vectors this distance

will range from 0, for two identical addresses, to N, for two addresses that are bitwise

complements. The potential address space is 2256 compared to 1,000 in the simple

example. Whereas the simple model had 100 hard locations, the basic module of the

prototype system has 8,192 locations with addresses scattered randomly with uniform

probability through the address space. Each hard location has associated with it a set
of 256 buckets to accumulate the vectors that may be stored into that location. Each

bucket is conceptually an 8-bit up/down counter that can hold a count in the range of

-127 to +127, inclusive. (If more than 127 ls are stored into a bucket in excess of 0s,

the bucket will have an overflow. Similarly, an underflow will occur if the number of 0s

stored into a bucket exceeds the number of ls by more than 127.) For the discussion

that follows, it is useful to visualize the 2 N input space as a two-dimensional rectangle.

Figure 1.7 shows the address space in this fashion. The physical locations are indicated

by the small black dots within the rectangle.

The process of writing or storing a vector into the memory consists of the following

two steps: (a) Draw an N-dimensional sphere of Hamming radius d around the address

of the input vector. In the plane this can be visualized as drawing a circle centered

at the address of the input vector. (b) For each physical location that falls within

this sphere, accumulate the contents portion of the input vector into each of the 256

associated buckets. This is depicted in Figure 1.8.

Given a retrieval address, the process of reading from the memory proceeds in a

similar two-step fashion: (a) Draw an N-dimensional sphere of Hamming radius d'

(which need not equal the radius d used for storing patterns) centered at the retrieval

cue. (b) Derive the /th bit of the output vector (i going from 1 to M) in a manner
identical to that used in the simple example. Specifically, sum the contents of the ith

buckets of all the locations falling within the sphere drawn above, and then threshold

the sum to either 1 or 0 based on whether the sum is positive or negative. This is

depicted in Figure 1.9.

1.5 Autoassociative dynamics

We are now in a position to understand the reconstructive properties of SDM when

used in the autoassociative mode. In this mode, the dimensionality of the address and

contents portions of an input vector are the same. In fact, the contents are used also as

the address. This means that the input vector can be viewed as consisting of a pattern

vector P that forms its address vector, and the same pattern vector P that forms it

contents vector. During storage, the pattern vector P serves as the address that is used

to select a number of physical locations. The same vector P is also stored into each of



14 CHAPTER 1. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

• • • • • • • • 4---- Box represents

• • • • • • the entire

• • • • • • • address space

° ° • • ° • • • • ° ° °o ° O • •

• •
_ • • • - f Each dotiee

• • • • • • _, physical location

• • • • • • • • • •

• • • • • • L • • • •

Figure 1.7: Space of locations.

| • • • • g • s- N_ Address of the

I " " " " _ " I input v.ctor

I I
• • I

_e • . • radius d Accumulate the

1 • • • _ • I contents of the

I • • • • • e_-I input vector into
I" • • • • • I •11 locations that

| • • • | fall inside this

no " " " " " " _I circ,,

• • , * • • " , •

Figure 1.8:SDM storageactivationradius.

O • • • •

• • • • • • • •

• • • • /e •

• • • • • _0 • •

• • . • . ( • i_,r._ . . •

. . • •
• • _dlu,d._. • • •
• • • • • • • • • •

• • • • • • i • • • •

Retrieval address

Perform bit.wise
summation end

thresholding
opersuon on the
contents of •11
locations that
fall in this
circle to derive
the output vector

Figure 1.9: SDM retrieval activation radius.



1.5. A UTOASSOCIATIVE D)_WAMICS 15

I I i

Store P3 Into all

Store PI into all / _ locations falling

lecatlon,,o.l,,g .,,, circle
InsI,,et,,,, ,/

circle

/ _.=. _ Read out from all

/ _ t _- L / locations falling

/ _ Stere P2 iota all locations

failing Inside this circle

For clarity, individual physical locations are not shown.

Figure 1.10: Overlapping radii.

the locations it activates. Figure 1.10 shows three pattern vectors P(1), P(2), and P(3)

stored into locations in memory. Z is a contaminated or partial version of P(1), and

the goal is to have the memory reconstruct P(1) when cued with Z. As shown in the

diagram, the locations activated by Z are of six types:

1. Those that contain only P(1).

2. Those that contain P(1) and P(2).

3. Those that contain P(1) and P(3).

4. Those that contain only P(2).

5. Those that contain only P(3).

6. Those that contain nothing.

This can be generalized to say that the locations activated by Z contain a mixture

of P(1), which can be regarded as the signal, and non-P(1) patterns, which can be

regarded as noise, using nomenclature from Keeler [4].



16 CHAPTER 1. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

The signal-to-noise ratio is higher (a) the closer Z is to P(1) and (b) the less densely

populated the memory is, i.e., the fewer patterns that have been written into it. It

can be shown mathematically [3] that if Z is closer than a certain critical distance

from P(1), then summing and thresholding the contents of the locations activated by

Z results in a vector Z(1) that is closer to P(1) than Z was. The critical distance is a

function of how densely populated the memory is. The greater the population of the

memory, the smaller the critical distance. The fact that Z(1) is closer to P(1) than Z

was isofgreatbenefitbecause now Z(1) can be used as a new retrievalcue. The output

Z(2) willbe even closerto P(1) than Z(1) was, and ittoo can now be used as a new

retrievalcue. This iterativeprocess,which isa form offeedback,thereforeproduces a

sequence of outputs Z(1), Z(2), ...,Z(n) that convergesrapidlyto eitherP(1) or a

minimally noisy versionof P(1). This isdepictedin Figure 1.11a.Ifthe cue vectorZ

isbeyond the criticaldistancefrom P(1), i.e.,ifitistoo contaminated or incomplete,

the sequence of vectorsZ(1), Z(2), ... willnot converge to P(1). Instead,itwillbe a

divergingsequence that willwander through addressspace.Itmay eventuallywander,

by chance,intothe attractingzone ofsome otherstoredpattern,say,P(k), and thereby

converge onto P(k). This processisdepictedin Figure 1.11b.

Experimentally,convergence to the correctvalue P(1) occurs rapidly(_10 itera-

tions),whereas the divergingsequence,ifiteventuallyconvergesto some otherpattern,

takesa largenumber ofiterations.The two situationsaxeeasy todistinguishinpractice.

There isan upper bound to the valueof the criticaldistancereferredto above. In a

sparselypopulated memory in which thereislittleor no overlapbetween the locations

in which patternshave been stored,the criticaldistanceisnecessarilylessthan the sum

of the Hamming radiiused during storageand retrieval.Ifthe cue Z isbeyond this

distancefrom P(1), none of the locationsactivatedby itduring the retrievalprocess

willcontainany copiesof P(1).

The behavior of SDM illustratedin Figures 1.11aand b issimilarto the dynamic

behavior of the Hopfield net used in itsautoassociativemode. In that model, stored

patternsactlikeattractorsforinput cueswithina certaincriticaldistance.The behavior

ofthe Hopfieldmodel, however,isdrivenby an energy-minimizationmechanism inwhich

the storedpatternsbehave likelocalminima of an energy functionassociatedwith the

address space.

1.6 Heteroassociative dynamics (sequences)

SDM can alsobe used in a heteroassociativemode. In thismode the contentsportion

of an input vectorisnot generallyequalto itsaddressportion.In general,the two do



1.6. HETEROASSOCIATIVE DYNAMICS (SEQUENCES) 17

P1

Z1

Z

(a)

Cueing the memory, with
Z sufficiently close to P1
results in a rapidly
converging seqence of
values. The stored pattern
P1 acts like an attractor.

P1

Z Z2

Pk

(b)

If Z is too distant from P1,

the iteratively retrieved
sequence does not converge.
It may eventually converge
on some other pattern Pk.

Figure 1.11: SDM autoassociative mode.



18 CHAPTER 1. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

not have to be of the same dimension either. However, when they do have the same

dimensionality, SDM lends itself to the storing and recalling of sequences. Consider a

sequence of N-dimensional pattern vectors

P(1),P(2),P(3),...

Examples of such sequences might be (a) a sequence of motor-control parameters for

controlling the trajectory of a robot arm, or (b) a sequence of musical notes that com-

prises a tune.

Imagine forming the input vectors shown below, where the address portion of an

input vector is the previous data pattern element in the sequence.

Address pattern Data pattern

P(1) P(2)
P(2) P(3)

P(3) P(4)

:

P(i) P(i + 1)

These vectors can be used to write into the memory. The effect of this is that at the

locations selected by the address P(1), the pattern P(2) is stored; at the locations

selected by the address P(2), the pattern P(3) is stored, and so on. In general, at the

locations selected by the address P(i), the pattern P(i + 1) is stored. This is illustrated

in Figure 1.12.

Now imagine cueing the memory with a pattern close to one of the elements of the

stored sequence. For example, suppose we cued the system with the address P(2), that

is close to P(2). Just as in the autoassociative case, if P(2), is sufficiently close to P(2),

the retrieved pattern will be even closer to the pattern that was stored in the locations

activated by the address P(2). In this case the retrieved value P(3), will be closer to

the stored value P(3) than P(2), was to P(2). If P(3), is now used to cue the memory,

the retrieved pattern P(4), will be closer to P(4) than P(3)* was to P(3). Continuing

in this manner, we observe that cueing the memory with the pattern P(2), allowed us

to iteratively recover the sequence: P(3),, P(4),, P(5),, ... that converges onto the

stored sequence P(3), P(4), P(5), .... This is illustrated in Figure 1.13.

Just as in the autoassociative case, if the initial cue P(2), is too distant from P(2),

the retrieved sequence would not converge to the stored sequence. However, unlike

the autoassociative case where convergence can be easily distinguished from divergence,

in the case of sequences the difference is unfortunately hard to tell by looking at the

retrieved patterns.



1.6. HETER OASSOCIATIVE D YNAMICS (SEQ UENCES) 19

i i

P(1),_._. ,, store P(2)into all locations

(_+ "_ inside this circle

] . store P(3)into all locations

__ inside this circle I

P(2) j "-J- 1 ..store P(i+1)into all locations

_ inside this ',ircle

P(i) "__.._._
i i

A sequence can be stored by using an element, P(i), as the
address and the element that follows it, P(i+1), as the contents.

Figure 1.12: SDM heteroassociative mode: storage.

P(3) P(4)

o,,
./--

P(171/" e o " ""_,.,I

P(2) P(5)_

oP{ 6 }

\
P(7) •

Using a cue close to any member of a stored sequence iteratively
recovers a sequence that converges to the stored sequence.

Figure 1.13: SDM heteroassociative mode: retrieval



20 CHAPTER I. INTRODUCTION TO SPARSE DISTRIBUTED MEMORY

1.6.1 Folds

The ability to store sequences endows SDM with the capability to behave as a predictor.

The values recovered from stored sequences provide a prediction of the most probable

future event. This is illustrated in the following example. Suppose the sequence A ---*

B ---* C _ D occurs more often than the sequence A ---, B _ E ---, D. Suppose,
further, that each sequence that the system encounters is written into it in the manner

previously described. If the system now encounters B* (close to B), what is likely to

happen next? Cueing the system with B* will recover C, (close to C) rather than

E, (close to E), because in the locations activated by B there were more copies of C

stored than of E, simply because it occurred more often. Thus, the retrieval mechanism

predicts the most likely next step in the sequence.

The examples used so far have associated the next element in a sequence with the

one before it. This is often insufficient as a basis for prediction. For example, consider

the two equiprobable sequences:

A_B_C_D

E_B_C.-..,F

Given an event C*, we have insufficient information to predict the next event. In

fact, to do so we need to look not only one but two steps back in the sequence to

know which sequence we are in. SDM handles such situations by utilizing "folds" of
different "orders" and combining the results from different folds to arrive at the result.

In general, a kth-order fold is a complete set of SDM locations in which sequences are

stored with pattern P(i) serving as the address and pattern P(i -{- k) serving as the

contents. More specifically, a first-order fold is one in which the pattern stored is the

one that immediately follows the pattern that forms the address. A second-order fold

is one in which the stored pattern is the one that follows the address pattern by two

steps, and in a third-order fold the stored pattern follows the address pattern by three

steps. The two sequences listed above would result in the following storage in each of
three folds:

Sequence A_B_C_D E_B_C_F

lst-order_ld

2nd-order fold

3rd-order fold

at A store B at E store B

at B store C at B store C

at C store D at C store F

at A store C at E store C

at B store D at B store F

at A store D at E store F

Figure 1.14 shows how to use multiple folds to arrive at a prediction. Imagine



1.6. HETEROASSOCIATIVE DYNAMICS (SEQUENCES) 21

0

o--

¢J)

Encountered events

©

©
input to 2nd ,,.=

oroer folo ='-

©

1st order fold

2rid order fold

3rd order fold

Predictionof next
element in sequence

Contents

of activated

locations

D, F

D, F

F

I Sum and Threshold

@
= F

Figure 1.14: Folds.

that the system has previously encountered the sequences A --* B --* C ---* D and

E --* B --* C _ F in an equiprobable way and that it has stored patterns into its three

folds in the manner shown above. Now, assume that the system encounters the patterns

E, B, and C in that order. The input being encountered is fed into a mechanism like

a shift register in which each register holds a pattern. The shift-register contents are

used as input cues to successively higher order folds. In this case, the most recent input

pattern C is used as an input cue to the first-order fold, B is used as a cue to the
second-order fold, and E is used as a cue to the third-order fold. To derive a result,

the standard summing and thresholding operation is performed on the contents of all

the locations activated, not fold by fold. The locations activated by the cue C in the

first-order fold have had an equal number of D and F patterns written into them, as

have the locations activated by the cue B in the second-order fold. The cue E activates

locations in the third-order fold that have only had F patterns written into them. The

result of summing all of these together and then thresholding is that the pattern F

is recovered with high probability. This pattern is the system's prediction of the next

event that is likely to occur.



Chapter 2

Description of the Prototype

This chapter provides an overview of the physical and functional design of the SDM

prototype. It explains how the concepts introduced in Chapter 1 are implemented and

acts as a introduction to the more detailed descriptions of the hardware and software
presented in Chapters 3 and 4, respectively.

Some of the parameters of the prototype design were described in Section 1.4.4 on

page 11. Specifically, input vectors (referred to as "words" from here on) are 256 bits

long. The system implements 8,192 hard addresses (locations). Words written into the

system are accumulated, bit wise, into buckets that hold an 8-bit binary count. These
and some performance characteristics of the system are summarized below in Table 2.1.

The prototype system was designed around four modules. This modular approach

provides the flexibility to modify memory parameters for the present project and makes

it easy to upgrade specific portions of the system in future designs. Figure 2.1 shows
a physical and block diagram of the system, while Table 2.2 shows the hardware and

Word size:

Counter size:

Capacity per fold:
Number of folds:

Hamming Radius:

Number of reads or writes per second:

256 bits

8 bits

8192 words

1 to 16

0 to 255

5O

Table 2.1: Parameters of SDM prototype.

22



2.1. PHYSICAL DESCRIPTION 23

Module Underlying Hardware Underlying Software

Executive Module Custom C-code

Control Module

Address Module

Stack Module

Sun 3/60 workstation, or

any microcomputer with SCSI

port

M-68020 based single-board

computer

Custom designusingLSI com-

ponents on wire-wrap board

M-68000 based single-board

computer (1 per fold)

Assembly language code

None

Assembly language code

Table 2.2: Hardware and software components for prototype system.

software used to implement each module.

Each of these modules is described briefly below, and the description is expanded

upon later in this chapter.

2.1 Physical description

The Executive Module provides the interface between a user or application and the

rest of the system. The system's "focus," described in the Introduction, resides in the

Executive Module. It is a software module that resides on a Sun 3/60 workstation. It

communicates with the rest of the system via the Small Computer Systems Interface

(SCSI) port on the Sun. The Executive Module software is written in C and is designed

to be easily portable to any microcomputer with an SCSI interface. The rest of the

system, namely the Control, Address and Stack Modules, reside in a custom card cage.
The Control Module acts as the link between the Executive Module and the rest of the

system and controls the operation of the Address and Stack Modules. It is implemented

on a single-board microcomputer based on a Motorola 68020 microprocessor. The board

has 4 MB of random-access memory. The operating program is written in assembly

language. The Control Module communicates with the Executive Module via an SCSI

bus, and with the Address and Stack Modules over a VME bus that links all modules

on the card cage.

The Address Module performs the task of determining which Hard Addresses are

within the specified Hamming distance of the Reference Address. Because of the compu-



24 CHAPTER 2. DESCRIPTION OF THE PROTOTYPE

workstation

!)'_ /,Custom card cage

SCSI

i

Module Module

CSI bu

Address I

Module
I(1
I,

Stack I

Module I
per fold)l

I

Figure 2.1: Physical and block diagrams of SDM prototype.



2.2. FUNCTIONAL DESCRIPTION: 25

tational intensity of this task, the Address Module is custom designed and implemented

on a wire-wrap board. The Address Module is the only custom designed piece of hard-

ware in the entire system.

The Stack Module holds the contents of the folds. Each fold is implemented on

a Plessey Microsystems Motorola 68000 based single-board computer with 4MB of

random-access memory. Each counter is implemented as a byte (8 bits) in the memory

space of the microprocessor, with the task of writing into the counter or reading from

the counter being performed by the processor. Since the contents of a location consist

of 256 counters, we use 256 sequential bytes to implement the 256 counters associated
with each location.

2.2 Functional description:

2.2.1 How the Address and Stack modules implement SDM loca-

tions: The concept of "Tags"

In a Sparse Distributed Memory, each Hard Address has associated with it a set of

counters in which to store words that are written into that location. In our imple-

mentation, the Hard Addresses are stored on one board (the Address Module) while

the counters associated with them axe stored on a separate board (the Stack Module).

The one-to-one association is maintained via a 13-bit "Tag" that associates a particular

Hard Address on the Address Module with a particular set of 256 byte-sized counters

on the Stack Module. The conceptual arrangement is shown in Figure 2.2.

Thus, when the Address Module determines that a particular Hard Address is within

the cut-off Hamming distance of the Reference Address, it simply passes the 13-bit Tag
associated with that Hard Address to the Control Module. The Control Module in turn

passes the Tag to the Stack Module, which uses the Tag to uniquely identify a set of

256 bytes that hold the contents of the location associated with the Hard Address in

question. Physically, the Address Module stores the Hard Addresses in a set of 32 static

RAMs, each of which is 8K x 8 bits. Since these RAMs are operated in parallel, they

behave like a set of locations that is 256 bits wide and 8192 deep, which is what we

need to implement 8192 Hard Addresses. The arrangement is shown in Figure 2.3.

As described earlier, the Stack Module implements the 256 counters associated with

a location with 256 consecutive bytes in the address space of the M68000 processor.

Thus, the counter values associated with the Hard Address with Tag 0 would be stored

in bytes 0 to 255. For an arbitrary Tag N, (0 < N _< 8191), the associated bytes

would be at addresses (N • 256) to (N • 256 + 255). (The exact mapping is conceptually



26 CHAPTER 2. DESCRIPTION OF THE PROTOTYPE

13 bit
tag Hard Address

256 bits
0 I I

1 I I

8191 I I

13 bit
tag Contents

_ - 256 consecutive bytes _-
0 I I

1 I I

8191 I I

Address Module One fold in Stack Module

Figure 2.2: Relation between Address and Stack modules.

8K

256 bits

8 bits

i

A particular 256 bit Hard Address

v

--f-
f

13 bit address bus

Figure 2.3: Physical arrangement of hard addresses in Address module.

....g__,



2.3. OPERATIONAL DESCRIPTION 27

identical, though the locations in memory space are a little different).

2.3 Operational description

In order to explain how the prototype works, the description is divided into a set-up

and operating phase. Each of these is explained below.

2.3.1 Set-up

The set-up phase consists of loading a set of up to 8192 Hard Addresses into the Address
Module. The user determines what Hard Addresses to use for a particular application.

For example, a set of 8192 randomly distributed Hard Addresses could be generated by

rolling a die 256 × 8192 times and converting the results into a sequence of 0s and ls

by viewing any roll of 3 or less as a 0 and any roll of 4 or greater as a 1. The results of

every set of 256 consecutive rolls could be used as a Hard Address.

Once the user has determined the Hard Addresses to be used, the Executive Module

passes each Hard Address and an associated Tag to the Control Module, which in turn

passes them to the Address Module, which writes the Hard Address into the physical

location identified by the Tag. (Hone were starting a fresh application, there would be no

reason to not load Hard Addresses into sequential locations in the Address Module, and

passing the Tag from the Executive Module would be redundant. However, this ability

to load a Hard Address at a particular Tag location is useful for testing performance

characteristics and for debugging. For example, it allows one to change a particular

Hard Address by simply storing a new one into the same Tag location.)

2.3.2 Operation

During its operating mode, the SDM system either reads or writes. How each module

works to achieve this is explained below, first for a write and then for a read.

(a) SDM Write

1. The Executive Module passes the 256 bit l_eference Address and the 256 bit "data"

word to the Control Module, as well as the cut-off Hamming distance to use.

2. The Control Module passes the Reference Address and cut-off Hamming distance

to the Address Module, and the data-word to the Stack Module.



28 CHAPTER 2. DESCRIPTION OF THE PROTOTYPE

.

.

.

The Address Module sequentially calculates the Hamming distance between each

Hard Address and the Reference Address and compares it to the cut-off Hamming

distance. Whenever it finds a distance less than the cut-off, it passes to the

Control Module both the Tag of that Hard Address and the Hamming distance it

calculated.

Whenever the Control Module receives a Tag from the Address Module, it passes

the Tag to the Stack Module and both the Tag and Hamming distance to the

Executive Module. (The latter is to study performance characteristics of applica-

tions).

Whenever the Stack Module receives a Tag from the Control Module, it performs

256 integer adds. Each add consists of adding either %1 or -1 into sequential

bytes in memory, depending on whether the associated bit in the data-word is 1

or 0. A code segment to explain what happens is shown in Figure 2.4.

(b) SDM read

1. The Executive Module passes a Reference Address and a cut-off Hamming distance
to the Control Module.

2. The Control Module passes both of these to the Address Module.

o The Address Module performs exactly the same operations that it does during

a write. Namely, it passes back to the Control Module the Tag and Hamming

distance for every Hard Address Hamming distance from the Reference Address

is less than the cut-off Hamming distance.

4. The Control Module performs the same operations as during a write. Received

Tags and Hamming distances are passed to the Executive Module, while the Tags

alone are also passed to the Stack Module.

5. The Stack Module establishes a 256 element integer array to hold the results of

its operations. Every time it receives a Tag from the Control Module, it performs

256 integer adds; each add consists of adding a byte-sized counter value into an

array element. The operation is shown in Figure 2.5.

6. When the Address Module has gone through all 8192 Hard Addresses and the

Stack Module has performed its accumulation task for every selected Tag, the

Stack Module sends to the Control Module the results of its accumulations (i.e.,

Result[0] to Result[255] from Figure 2.5).



2.3. OPERATIONAL DESCRIPTION 29

/
dataword [0] dataword [255]

!11

/

For each tag received from Control Module do :

begin

StartingByteAddress := Tag * 256 ,
for J := 0 to 255 do

begin
M :-- StartingByteAddress + J ,

byte [M] := byte [M] + ( 2 * dataword
end ,

[J] 1 )

end;

The jth bit of the data word is accumulated into the jth byte of each selected

location. A '1' bit in the dataword causes the count to go up by 1, while a '0' bit

causes the count to go down by i.

Figure 2.4: What the Stack module does during a write operation.



30 CHAPTER 2. DESCRIPTION OF THE PROTOTYPE

Result : Array [0..255] of Integer (* an array of integers *)

For each tag received from Control Module do

begin

StartingByteAddress := Tag * 256 ,
for J :- 0 to 255 do

begin
M :- StartingByteAddress + J ,
Result [J] := Result [J] + byte [M]

end

end;

Figure 2.5: How the Stack module accumulates the contents of locations selected by the

Address module during a read operation. The M da counter of each selected location is

accumulated into the M th element of the array "Result" for J from 0 to 255.



2.4. SUMMARY 31

7. The Control Module thresholds each result to either 0 or 1, depending on whether

it is negative or positive. It then constructs a 256 bit data-word from the thresh-
olded results. This data-word is returned to the Executive Module as the result

of the read operation.

2.4 Summary

The prototype has been designed to provide a significant improvement in performance
over software simulations of sparse distributed memory systems, while maintaining a

high degree of flexibility. Those goals have been achieved by dividing the system into
four modules, and by using standard subsystems (e.g., single-board computers) and

software based implementations wherever feasible. One module contains a custom-

hardware-based design. This was necessary in order to achieve the desired speed in the

critical task of calculating and comparing Hamming distances.

The next chapter describes the hardware, and in particular the custom-designed

Address Module, in more detail. Chapter 4 provides more details on the software.



Chapter 3

Hardware Description

This chapter describesthe detailsof the hardware portionsof the SDM system in the

followingorder:

• The executivemodel

• The controlmodule

• The stack module

• The address module

The address module isdescribedin the most detailsinceituses custom hardware re-

quiredto meet the performance specifications.

3.1 The Executive module

The primary requirements for the executive module are:

• Provide a user interface to the SDM;

• Implement a high-speed communications protocol to the other portions of the

SDM;

• Provide a common programmer interface;

• Handle the computation requirements for program modules that don't use the
SDM.

32



3.1. THE EXECUTIVE MODULE 33

The equipment that best fits the above requirements is the workstation. In par-

ticular, workstations provide an excellent user interface, have a programming interface

that most researchers are comfortable with, and handle the computation requirements.

Coincidentally, SDM simulators have been written for workstations; researchers who are

familiar with these can easily assimilate themselves into this implementation.

One component that is of critical importance is the communications interface be-

tween the executive module and the SDM. The communications system must support

the following operations:

i. Debugging. The entirecontentsof the SDM, includingthe Stack,Address, and

Control Module memory, should be transferrablein a reasonableamount oftime.

2. Setup. The contentsof the Hard Address Memory, to be locatedon the Address

Module, should be quicklydownloadable.

3. Operation. Given the operationalrequirement of 50 read/write operationsper

second (designedwith a safetymargin of x2),the system should support a burst

transferratethatwillallowtransferof the 256-bitreferenceaddress,an operator,

and up to 100 16-bittags (13-bittags axe passed as 16-bitwords) and 256 16-bit

sums per foldback to the executivemodule 100 times per second.

Of these, requirements 1 and 2 are of convenience; clearly, we wish to keep waiting

while debugging and setting up to a minimum. However, requirement 3 places a real

bound on the communications subsystem.

Assuming the worst case for a single-fold system, we must transfer 50 reference

addresses, 50 instructions, 50 * 100 16-bit tags, and 50 • 256 16-bit sums per second.
This translates into:

C = 50 • (256 + 8 + 100 • 16 + 256 • 16) = 298,000 bits/second

Again, assuming worst case, we allow for a protocol overhead of 50%:

N = 2C = 596,000 bits/second

for a single-fold system. Additional folds add 409,000 bits/second/fold.

One communications system that would easily meet this requirement has already

been mentioned: a bus-to-bus mapping switch. Clearly, the transfer rate of such a

device greatly exceeds our requirement. However, the use of a bus map introduces an

enormous amount of inflexibility into the SDM; in particular, preferential addresses will

probably be already taken by the workstation. The use of a bus map would also require



34 CHAPTER 3. HARDWARE DESCRIPTION

that the bus used by the executive module be the same as that used by SDM. This limits

flexibility of choice of the executive module, and may place severe structural constraints
on the SDM.

A solution to this problem is to use an existing communications protocol that is

simple and provides the required bit rate. In particular, it helps to view the SDM as a

smart disk drive that is attached to the executive module. Most vendor-independent disk

protocols provide read and write operations and support some level of control-message

handling. Moreover, most workstations support some form of vendor-independent disk

protocol.

For our implementation, we chose the Small Computer Systems Interface protocol,

or SCSI, to provide communications between the Executive and the other modules of

the SDM. SCSI supports a burst rate of 1.5 Mbps and provides a reasonable number

of control functions. Because of the large number of workstations that support SCSI,

this implementation of the SDM system may be attached to almost any workstation,

mainframe, or even a personal computer.

Thus, the requirements for the Executive module indicate a powerful workstation

that supports the SCSI protocol. Because of our familiarity with the products of Sun

Microsystems, the current implementation uses a Sun 3/60 color workstation, with the

SDM attached to one of the SCSI ports. We emphasize, however, that any system that

supports the SCSI protocol is capable of using the SDM as an attached processor.

3.2 The Control module

The Control Module, or CM, acts as the interface between the executive module and

the rest of the SDM. It manages the operation of the Address Module and transfers

tags from the AM to the appropriate Fold in the stack module.

The choice of a processor for the CM was influenced heavily by two considerations:

1. The need for a large (greater than 24 MB) address space;

2. The availability of software tools.

The large address space mandates the use of the VME-bus standard interconnect,

which in turn favors the Motorola 68000 family of processors. In addition, we had soft-

ware tools available for this processor family. The memory-to-memory transfer band-

width mandates the use of a 32-bit processor; the MC68020 fills all of these requirements.

Thus, the requirements for the CM are as follows:



3.3. THE STACK MODULE 35

1. Motorola 68020, 15 MHz or greater clock speed;

2. A large quantity (about 4MB) of dynamic RAM, to hold reference tables and

Hard-Address-to-Tag translation maps;

3. DuM-Ported memory, to support asynchronous transfers;

4. An SCSI port, to interface back to the executive module.

A vendor search indicated that Plessey Microsystems would be able to deliver a

board with these specifications, in addition to one that matched the requirements for

the folds, which will be discussed later.

The actual functionality of the CM is implemented in software; however, there are

a few features of the CM hardware that particularly facilitate the SDM:

.

o

Address Module simulation: Because of the large quantity of memory available.

a significant number of simulated AM operations can be stored on the CM for

debugging purposes.

Fold Downloading: The entire state of a single fold may be stored on the CM:

this allows us to directly manipulate the counters, and set up each fold in a

predetermined state.

3.3 The Stack module

The Stack Module consists of a number of submodules, known as Folds. Each fold is

independent; thus, the design of the SM is simplified by considering it as made up of a

number of similar submodules. The requirements for each fold are:

. Enough memory to hold an eight-bit count (i.e., one byte) for each bit in every

word of the Hard Address Memory. Practically, this implies a need for 256 •

8,192 = 2MB of memory;

2. The memory must be dual ported for debugging and initialization purposes;

3. A processing system that will be able to perform integer byte adds quickly enough

to satisfy the 50 operations/second requirement.

These requirements fall within the capabilities of a single-board computer, as long

as the processor on the board is fast enough to perform the necessary integer adds.



36 CHAPTER 3. HARDWARE DESCRIPTION

Because the machine deals largely with byte adds and 16 bit references (for translating

Tags into counter addresses), a fast 16-bit processor will suffice.

To this end, considering the implementation decisions for the Control Module, we

again selected a processor card based on the Motorola MC68000 architecture. Plessey

Microsystems was able to provide a board with a 16 MHz MC68000, and 4MB of

dual ported dynamic RAM, that was less expensive than their MC68020 product. The

additional memory can be used to implement the Fold software, or it could be used to

implement 16 bit counters (the Fold software would then be contained within two 8KB

R.AM/R, OM positions which are open on the card).

3.4 The Address module

The Address Module, or AM, is the only custom component of the SDM. It will be

described in considerably more detail than the other components. As mentioned in the

architecture section, more than one AM may be used within the SDM if the performance

increase is required. The reason for a custom implementation lies in the fundamental

operation that the AM performs, which is a 256-bit Hamming distance calculation.

It should be stressed that a 256-bit word is very large. In order to fully appreciate

the difficulty of designing a processor with 256-bit internal data paths, consider the

following:

1. If one designs the data-path elements with byte-wide, commercially available prod-

ucts, each element in the data path requires 32 chips.

2. Each link in the data path requires 256 connections; a four-element data path will

easily require in excess of 1,000 wire wraps.

These two numbers (components and connections) will quickly outstrip the capacity

of most boards and development systems; our system will fit only on a 400 mm high by

366 mm wide 9U sized VME bus card, which is the largest one available.

3.4.1 Overview and board floorplan of Address module

The Address Module appears to the control module as a set of sequential memory
locations on the VME bus. These addresses are defined as follows:



3.4. THE ADDRESS MOD ULE 37

Register Longname [width] R/W #32-bit Regs R#

TR Tag Register [16] W 1 0
Associates a 16 bit "Tag" with a hard address, by setting the address in the Hard
Address Memory in which a Hard Address is stored.

HAR Address Register [256] W 8 1-8
Enters a lqard Address into the ttard Address Memory.

MR Mask Register [256] W 8 9-16
Sets the Hamming AND mask.

RAR Ref. Address Register [256] W 8 16-24
Sets the Reference Address--the Address in Question.

LR Limit Register [8] W 1 25
Defines the radius of the Hamming Sphere. Any tag with Hamming distance less
than or equal to this will be written to TCO.

SR State Register [8] R/W 8 26
The bits in this register are wired to the state flipflops of the machine.

TCO Tag Cache Output [24] R 1 27
256-word cache that holds the accepted tags.

The bits in the state register axe

Run Modes: Bitl Bit0

0 0

0 1

1 0

1 1

Reset Control: Bit2

0

1

Cache Indicator: Bit3

0

1

Mode: Bit4

0

1

definedas follows:

Reset

Running

Hit

Wait

Run (or Hit or Wait)
Reset

TCO empty

TCO not empty

Uncomplemented Addresses

Complemented Addresses

Bits in the tag cache output axe defined as follows:

Bit7 - Bit0 Hamming Distance I

Bit23 - Bit8 Tag ID J
Figure 3.1 is the board floorplan for the AM. It also names the six submodules of



38 CHAPTER 3. HARDWARE DESCRIPTION

the AM, namely:

1. Clock and Sequencer: This submodule contains the master state machine and the

master clock.

2. Hard Address Memory. All 8,192256-bitaddressesare containedinthismemory,

which consistsof32 8KB staticRAMs.

o

o

Arithmetic Logic Unit: This submodule performs the 256-bit exclusive-OR and

mask operations. The Reference Address Register and Mask Register, each con-

sisting of 32 74ALS373 8-bit latches, are combined here with a Hard Address by

a logic unit, which consists of 32 programmable logic arrays (PLAs). The ALU's

result is a 256-bit quantity with ls in those positions where the Reference Ad-

dress differs from the Hard Address, in those positions where the Mask bit is 1.

The number of ls in this result is the Hamming distance between the Reference

and Hard Address. (The Mask is a 256-bit user-specified pattern to restrict the

Hamming distance calculation to a subset of the 256 bits, if desired.)

The Bit Counter. The bit counter calculates the Hamming distance by essentially

adding 256 one-bit quantities, and then compares the result with the Limit Reg-

ister. If the result is less than the Limit Register, we have a "hit," and both the

result and the Tag associated with the particular Hard Address axe written into

the Tag Cache.

. Tag Cache. During a read or write cycle, when the Address Module finds a Hard

Address whose Hamming distance from the Reference Address is within the limit

prescribed by the Limit Register, it is supposed to send the Tag associated with

that Hard Address, as well as the Hamming distance, to the Control Module. The

Tag Cache allows this operation to occur without the need for synchronization
between the Address Module and the Control Module.

When the Bit Counter discovers a Hit, it writes the Tag and its associated distance

into the Tag Cache. The Control Module reads this information out of the Tag

Cache. Thus, the Tag Cache acts as a First In-First Out buffer between the

Address Module and the Control Module. It has space for holding up to 256 Tags

and their associated Hamming distances.

Mechanisms described later prevent the Tag Cache from overflowing. Essentially,

when the Tag Cache is full, the ALU and Bit Counter are halted until the Control

Module has cleared some space in it. This condition is rarely expected to occur

since the average number of hits per read or write operation is expected to be less
than 100.



3.4. THE ADDRESS MODULE 39

6. Bus Interface. Finally, the bus interface provides address mapping, power, and
control information to the AM from the VME bus.

The signals common to most of the submodules are referred to as global signals and

are detailed in Figure 3.2. Note that there are only two 256-bit global signal groups;

these constitute the main data path of the AM.

Figure 3.3 details the state transitions of the Address Module. The four processor
states are as follows:

0. Reset. This is the "normal" power-up state of the AM. The AM may be reset and

held in this state by setting the reset bit in the Status Register.

1. Run. The AM enters this state from a reset when the reset bit in the Status l_egister

is zeroed. It continues to loop within this state until a hit (Hard Address "close"

to Reference) occurs or until the Hard Address Memory is exhausted.

2. Store. When a hit occurs, the AM must transfer the Tag associated with the Hard

Address, and the distance, to the Tag Cache.

3. Wait. This state is entered only if the Control Module allows the Tag Cache to fill

up. For the most part, the total number of hits per operation will be much less

than the size of the tag cache. This state is provided as a safety measure and

should be useful for experimentation and debugging.

The timing diagram in Figure 3.4 indicates the expected sequence of events during

a machine cycle in each of the AM states. The longest state to execute is a Run state,

which takes about 750 ns. Variable clock-cycle states were not implemented, since the

AM spends most of its time (10,000 cycles out of 10,100, or 99%) doing Run cycles.

This is well within the required cycle time of 1.0 microsecond, and a 1.0 MHz clock is
used in the current version.

We will now examine each submodule of the AM in detail.

3.4.2 The clock/sequencer

The clock/sequencer implements the state machine described above. It consists of a

pair of J-K flip-flops, logic to implement the state transitions, and a 1.0 MHz clock. It

also contains the Reset flip-flop.

All of the flip-flops used in this submodule are both readable and writeable from

the CM, via the Status l_egister. This allows the state of the AM to be determined, for



40 CHAPTER 3. HARDWARE DESCRIPTION "

I Address Module Sparse

COM1TIED

J2

J1

VME bus

_'----75

ALU

Memory

75 _ '4-"_75

400mm

v

Hard

Address

Project I

I

and

Seouencer

75"-"_ 'ql-'- 50 --'#

--[-

366mm

(9u)

a

Figure 3.1: Floorplan.



3.4. THE ADDRESS MODULE 41

Bus Name Bus Definition

Reg[00]-Reg[1F] ...... Register Address Lines

Reg 00 :: TR
Reg 01-Reg 08 :: HAR
Peg 09-Reg 10 :: RAR
Reg ll-Reg 18 :: MR
Reg 19 :: LR
Reg 1A :: SR
Reg 1B :: TCO
Reg 1C-Reg 1F:: Undefined

Xd[00] - Xd[IF] ...... 32 bit bidirectional Data Bus

Yd[00] - Yd[FF] ..... 256 bit HAM to ALU Data Bus

Zd[00] - Zd['FF] ....... 256 bit HAM to BC Data Bus

D[0] - D[7] ............. 8 bit Haming Distance Data Bus

T[0] - T[F] ............. 16 bit Tag on Data Bus

S[0] - S[3] .............. 4 bit State Bus

Flag Name Flag Definition

Hit .................. HAR within LR of RAR

Rst .................. Global Reset

Not ................. Use complemented HAR

Full ................. TC "full"

Hrw ................ HAM Read / Write

Tr ................... Tag Cache Read

Tw .................. Tag Cache Write

Figure 3.2: Global signals of the Address module.



42 CHAPTER 3. HARDWARE DESCRIPTION

Rst

Hit

l_'ansition Eauations

(_) R_t

®:
Rst + Done

Q Hit * Rst * Done

Hit * Rst

Q Fuu

Full * Rst

Rst

Full

Notes."

A All stste Iransifionsoccur
on thepositiveclockedge.

B Hit &Fullinhibit tagcotmmr
incremented

Figure 3.3: State-transition diagram of Address module.



3.4. THE ADDRESS MODULE 43

25ns
---"-! Tag Counter

/_u11400 ns --/.
is Valid

TCO Counter

_S'J,,CJJ_'JJ_'J.S.t J.S',SJ J_

_All State Transtlam

I Increment Tag Counter

,1,500ns ,,,,I,!
A M is Reset i

IIIIIIIIIIIIIIIIII

,!
/////////////!//l//i

_J_Jl_fJJJJJfJfJJJJJfJJJJJJ/J_

llllllllllllllllllllllllllllllllllll IFuU may be reset at any time
IIIIIIIIIIIllllllllllllllllllll|lll

LEGEND

_llllllllllllllllllllll 1

_ STORE CYCLE ,"
_._J'f d'..".c_S'l/ll._',_'/.s.r J'_"J'f _

llllw_ffrc¥c_ I
llllllllllllllllllllll

Figure 3.4: Timing diagram of Address module.



44 CHAPTER 3. HARDWARE DESCRIPTION

debugging purposes. In effect, the state machine delivers a hardwired "instruction" to

the rest of the AM; note that the four states correspond to programming statements,

while the state-transition logic defines the transfer of control in the microprogram.

The clock/sequencer submodule also contains a 13-bit cyclical counter, which is used

to address the Hard Address Memory during a Run cycle.

3.4.3 The hard address memory

The Hard Address Memory stores all 8,192 256 bit hard addresses, which define the

memory distribution. It consists of 32 6264LP-10 8k-by-8 bit static CMOS RAMs, along

with the associated internal bus-switching logic, which demultiplexes the input/output

of the RAMs. We also looked at implementing 16,384 hard addresses, but that would

have added 32 RAMs to the board, exceeding the available board space. An earlier goal

of 10,000 hard addresses was given up as unfit for available chip sizes.

Associated with each 256-bit Hard Address is the 13-bit address in which it is stored

in the Hard Address Memory. This 13-bit quantity is referred to as a Tag. To load

the Hard Address Memory, the Tag Register (implemented with two 74ALS373 8-bit
latches) is set to the desired Tag, and the Hard Address associated with the Tag is

loaded into the Hard Address Register (which is directly written into the RAMs).

3.4.4 The ALU

The ALU consists of a Reference Address Register, a Mask Register, and a logic array

to perform a 256-bit XOR-AND operation. The registers consist of 32 74ALS373 8-bit

latches each, and the logic array is implemented in 64 programmable logic arrays. In

addition, the ALU submodule houses the "Complement Mode" flip-flop bit. This allows

the complementary address space to be searched without reloading the Hard Address

Memory.

The resulting 256-bit word is then passed to the Bit Counter. The number of bits

in this word that are '1' is the Hamming distance between the Reference Address and

the Hard Address in question.

3.4.5 The bit counter

The Bit Counter implements a 256-bit wide one-bit adder in four stages. Each stage

was constructed from several 27256 32KB EPROMs. The first stage consists of 17 such

EPROMs, with each of the 15 address lines connected to one of 256 one-bit quantities.



3.4. THE ADDRESS MODULE 45

The resulting four-bit numbers are then added in the next stage, and so forth. At the

end of the fourth stage, the bit count is represented by a single eight-bit number (with

256 mapped to 255).

This eight-bit result is then compared with the Limit Register (a single 74ALS373); if

the result is less than the limit, the Hit flip-flop is set. The reset line for the Hit flip-flop

is made available to the Clock/Sequencer submodule, so that it may be complemented

once a Hit cycle is completed.

3.4.6 The tag cache

The Tag Cache is activated whenever the Bit Counter detects a Hit or whenever the CM

wishes to read its contents. The central component of the Cache is a trio of dual-ported

256 byte static RAMs. One RAM stores the distance, the other two store the Tag.

In operation, whenever the AM is ready to write a Tag, a write counter internal

to the Tag Cache submodule is incremented; this counter points to the address in the

DPRAM where the Tag and distance will be stored. The Tag and distance are then

written to the DPRAM. Whenever the counter reaches 255, the Full flip-flop is set.

When the CM issues a read request from the Tag Cache Output register, a read
counter is incremented. The contents of the DPRAM at that address is then sent back

to the CM via the VME bus. When the read counter reaches 255, the Full flip-flop is

reset. In normal operation, the Full flip-flop is never set because the read and write
counters are reset at the start of an SDM read or write and a normal SDM read or write

results in fewer than 255 hits.

3.4.7 The bus interface

Finally, the Bus Interface submodule handles all of the VME-bus addressing for the

AM, and internal to external bus translations. It consists of a set of bus transceivers,

along with a demultiplexor to generate all 28 register address lines, and supplies the

necessary power to the board.

3.4.8 Operation of the Address module

The AM operates in two distinct modes. Before an actual application is run on the SDM

system, specific Hard Addresses must be loaded into the AM. This in accomplished in

a "set-up" mode. During this mode the AM is in the Reset-state shown in the State

Transition Diagram, Figure 3.3.



46 CHAPTER 3. HARDWARE DESCRIPTION

Once set-up is complete, applications can be run on the system. This occurs in

"operating" mode, during which the AM can be in any one of three states, namely

Run-state, Store-state, and Wait-state, depicted in Figure 3.3.

A single read or write for an application causes the AM to:

.

.

3.

Loop through the Run-state 8192 times. During each loop, the Reference Address

is compared to one of the Hard Addresses, and the Hamming distance between

them is calculated and compared to the value in the Limit Register.

Visit the Store-state once for every hit encountered during a Run-state.

Visit the Wait-state whenever the Tag cache gets filled. As described above, this

will rarely happen, since the Tag Cache can hold the results of 256 individual Hits.

The details of what happens in the two modes are described below.

Set-up mode:

1. The CM sets the Reset bit in the Status Register; this effectively sets the Reset
flip-flop.

2. The CM loads the Hard Address Memory. This is accomplished by first loading the

Tag Register with the desired Tag, and then loading the Hard Address Register.

The Tag Register controls the address lines of the 8KB RAMs; each 32-bit bus
transfer loads four of the 32 RAMs.

Operating Mode:

.

*

.

The CM resets the Reset bit in the Status Register, and the state machine tran-
sitions into the Run state.

At the beginning of each new Run cycle, the Tag counter is incremented. The

output of the counter is placed on the address lines of the Hard Address Memory.

The contents of the Memory are then transferred to the ALU, to be XORed with

the Reference Address. The result is then ANDed with the mask, and passed to the

Bit Counter. The result propagates through all five stages, and is then compared

to the Limit Register. If the result is less than the Limit, the Hit flip-flop is set.

If the Hit flip-flop is set, the next cycle becomes a Hit cycle and the AM enters the

Store-state. The resulting Hamming Distance is sent to the Tag Cache, along with

the contents of the Tag counter. (The Tag counter contains the Tag of the Hard

Address that just scored a Hit.) The address in the Cache is then incremented; if

the result reaches 255, the Full flip flop is set. The Hit flip-flop is then reset.



3.5. SUM._VIARY 47

4. If the Full flip-flop is set, the next few cycles will be Waits, until the Cache Read

counter reaches 255. The Full flip-flop will then be reset.

5. If neither the Hit nor Full flip-flops are set, the next cycle will be a Run cycle.

This process continues until all of the Hard Addresses have been checked, at which
time the Address Module enters the Reset state.

A complete block diagram of the Address Module may be found in Figure 3.5.

3.4.9 Additional hardware

Beyond the basic board set and workstation, a VME bus card cage and SCSI cable

are also needed. The card cage must be able to accommodate at least two 400mm 9U

sized cards and more than eleven 6U 200mm cards. The cable required depends on the

workstation connectors.

3.5 Summary

A Sparse Distributed Memory system consists of an Executive Module, together with a

separate set of modules designated as the SDM. The SDM, in turn, consists of a Control

Module, an Address Module, and a Stack Module.

The Executive Module consists of a standard workstation that supports the SCSI

communications protocol. The Executive Module is connected to the Control Module

via the SCSI port. The CM consists of a fast single-board computer, with a large

quantity of dual-ported memory. The CM controls the Address and Stack Modules via

a common interface, the VME bus. The Address Module is a custom-made board that

performs the Hamming distance calculations for the SDM. The Stack Module consists
of several Fold submodules. Each Fold consists of a 16-bit single-board computer, with

enough memory to hold 2,097,152 8-bit counters.

This implementation of the SDM should be capable of 50 read/write operations per

second. It implements 8,192 hard addresses, each with 256 8-bit counters.



48 CHAPTER 3. HARDWARE DESCRIPTION

IIm]

l

l

Figure 3.5: Address module block.
ORIGINAL PAG]g l_

OE I'OOR QUALITY



3.5. SUMMARY
01_GINAL PAGE

OF POOR QUALFF_.
49

j

II ]I.

m m

P

itl I

i m
m

r

IL
it

m m

m m

i

.-. ... -[-

!
m
.

El

"9

',e

I-

Figure 3.5: Address module block, ¢_,_-_'$.



Chapter 4

Software Design

4.1 Introduction

This chapter describes the software systems that operate in conjunction with the hard-

ware described in Chapter 3. The prototype system is broken down into four modules:

• Executive Module

• Control Module

• Address Module

• Stack Module

The next section describes each module briefly, and then gives a description of how the

system works as a unit, including how communications are made between the different
modules.

The rest of the chapter takes each module in turn and gives a detailed description

of its operation. The user interface is included in the section on the executive module.

4.2 Overview

This section reviews the basic structure of the four modules, as described earlier in

Chapter 2. Figure 4.1 shows how the modules are arranged and the communications

paths involved.

5O



4.2. OVERVIEW ORIGINAL PAGE IS

.OF POOR QUALITY
51

Su.Ii

3/160

Disk

Controller Module

68020 (25 MHz)

4MB RAM

Address Module

Memory Module

Figure 4.1: Module axrangement.



52 CHAPTER 4. SOFTWARE DESIGN

4.2.1 Executive module

This is the user interface to the SDM. The software is being developed for a Sun 3/160

workstation. The interface is a mouse-oriented interface with display windows and

control panels.

The executive software is written in C. It communicates with the memory module

via a SCSI port. The software is designed to be portable (i.e., programs should run on
any workstation with a SCSI port).

The basic task of the executive is to translate user commands into directives to the

memory system. The executive allows the user to read and write SDM locations and

save memory images, among other things.

4.2.2 Control module

The control module, or controller for short, is the link between the executive and the

address and stack modules (see Figure 4.1). It communicates with the executive via
a SCSI bus and with the address/stack over a VME bus. The controller consists of

a 25MHz M68020 processor with 4MB of RAM. The basic task of this module is to

provide system power-up, initialization, diagnostics, and to act as a memory controller.

4.2.3 Address module

The address module decodes sparse memory addresses--i.e., it selects addresses that

are within the Hamming distance of the read/write address.

4.2.4 Stack module

The stack module stores the information written in the SDM. It is handed selected ad-

dresses by the controller. For reading, it retrieves the data from these selected addresses

and constructs a data word which is sent back to the controller. For writing, it simply

updates the selected locations with the data given to it by the controller.

The stack module has a 68000 processor with 4 MB of RAM.



4.3. SOFTWARE OPERATION 53

II

Sparse Distributed Memory

Waiting for signal from

READY!

I

Controller...

Hit button to display main menu:

Figure 4.2: Start-up window.

4.3 Software operation

The first step is to run the file sdm.c on the Sun workstation. The memory module

must then be powered up. Figure 4.3 is a schematic of the software operation and

communication paths between the different modules. Table 4.1 explains the terms used

in Figure 4.3. Figure 4.4 shows the software breakdown in the executive module. Note

that each module in the system has a command register which indicates the status

of that module. System operation begins with the control module. When booted, it

will send a "ready" signal to the executive. It then waits for the executive to respond

(Figure 4.2).

The executive, after receiving the "ready" signal, displays a normal-mode window

and related control panels (Table 4.4 and Figure 4.5). The executive then waits for

input. There are two alternative modes of operation, debug mode or normal mode.

Debug mode simply allows the user to read any location in the memory module. In

normal mode, the user can choose a Hamming radius, select an address mask and

an SDM location, and decide to either read or write that location. Selecting "read"

or "write" from the control panel initiates communication with the control module.

Figure 4.6 shows how the executive module handles user input. Every time the user

selects a command, the executive command register (XCR.) is updated, see Table 4.2.

If the user has selected "read" or "write" in normal mode, the executive sends a copy

of its XCR to the control module. It also sends copies of the mask address, Hamming

radius, SDM address, and SDM data if it is a write operation (Figures 4.3 and 4.5).

The controller uses the XCR to update the control module command register (CCR),

the stack module command register (SCR), and the address module command register



54 CHAPTER 4. SOFTWARE DESIGN

_ctmvE

waitfor"ready"signal.,

print_ m=u

XCR

addr

mask ,

radius

I
I
!

I
dis__,_

readdam _

XCR

deb addr

deb_data

CONTROL

boot

send "ready" signal

=.2_CCR

_'_"..AR

_CLR

buffer-_

CDR _

J

CDAR

CDDR -4

ADDRESS

_ACR

_AAR

_ALR

ATCO

_ACR

{debugdata}

STACK

_SCR

_SDR

_SAR

SDR

_SCR

{debugdata}

Figure 4.3: Software operation and module communication.



4.3. SOFTWARE OPERATION 55

Table 4.1: Explanation of terms.

XCR

addr

mask
radius

data

disk

deb_addr

deb_data

CCR

CAR

CDR

CMR

CLR

CDAR

CDDR

ACR

AAR

AMR

ALR

ATCO

buffer

debug data

SCR

SAR

SDR

(Executive Module Command Register). This register details the state of the
executive module, i.e. whether it is currently in a read or a write cycle and

whether it is in debug or normal mode (see Table 4.2).

The SDM address to read/write.

The address mask.

The Hamming radius chosen by the user.

The data to read/write at addr.

Where the selected SDM addresses are to be dumped.

The memory module address/register the user wishes to read while in debug
mode.

The data read at deb_addr.

(Control Module Command Register----see Table 4.2).

(Control Module Address Register). This contains the SDM address the user
wishes to read/write.

(Control Module Data Register). This contains the data the user wishes to
write or which has been read at CAR.

(Control Module Mask Register). This contains the address mask.

(Control Module Limit Register). This contains the Hamming radius chosen
by the user.

(Control Module Debug Address Register). This contains the memory module

address/register the user wishes to read in debug mode.

(Control Module Debug Data Register). This contains the data read at CDAR.

(Address Module Command Register---see Table 4.2).

(Address Module Address Register). This contains the SDM address the user

wishes to read/write.

(Address Module Mask Register). This contains the address mask.

(Address Module Limit Register). This contains the Hamming radius chosen
by the user.

(Address Module Tag Cache Output). This is a store for the selected SDM
addresses.

A temporary storeforselectedSDM addresses.

The memory module data read during debug mode.

(Stack Module Command Register---seeTable 4.2).

(Stack Module Address Register).This contains the currentlyselectedSDM
address.

(Stack Module Data Register).This containsthe data the user wishes to write
or which has been read at the chosen address.



56 CHAPTER 4. SOFTWARE DESIGN

Executive

Wait for "Ready!"

signal from
Contn Iler

Y

<
Display "Normal
mode" screen

I See Figure 4.5 I

getcommand

I processcommand I

[ See Figure 4.6

0

®

Figure 4.4: Executive software breakdown.



4.3. SOFTWARE OPERATION 57

(ACI_). Copies of the SDM address, address mask, and Hamming radius are sent to the

address module. If the operation is a write, the controller forwards the SDM data also.

The address module now has enough information to begin decoding SDM addresses.

When the addresses are decoded the address module updates the ACI_.. The controller

continually polls the ACR until it indicates that the selected SDM addresses are ready

(Figures 4.7, 4.8). The controller then reads the addresses from the address module's

tag cache output register (ATCO) into a buffer and passes them one by one to the stack

address register (SAR). (The selected addresses and their associated Hamming distances

are also dumped to the executive module). Processing is now concentrated in the stack

module (Figure 4.9). If the SCK indicates a read, the stack will add the contents of

each selected SDM location to an accumulator until the control module buffer is empty.
The contents of the accumulator are then forwarded as SDM data to the controller

which passes them to the executive for observation by the user. For a write operation,

the stack will update the selected SDM locations with the SDM data it has been sent

previously.

If, however, the user has selected debug mode, a debug mode window is displayed

(Figures 4.10, 4.11) and operation proceeds as follows (see Figures 4.3, 4.12, and 4.13).

First the user is given the option to read either an SDM location or a register in the mem-

ory module. When "read" is selected, the XCtt is updated and sent to the controller,

along with the debug address (address/register to be read). The controller updates its

CCK and the stack and address module command registers (SCtt, ACI_). The stack

and address modules, when in debug mode, simply wait for the controller to read the

required address or register. The controller reads the data at this address and forwards
it to the executive.



58 CHAPTER 4. SOFTWARE DESIGN

Table 4.2: Command registerdescriptions.

Executive Module Command Register(XCR)

1 0

XCR [0] error
XCR [I] debug mode

XCR [2] read operation

XCR [3] write operation

XCR [4-7] - reserved -

normal mode

Control Module Command Register (CCR)

1 0

CCR [0] error

CCR [1] debug mode normal mode
CCR [2] read operation -

CCR [3] write operation -

CCR [4] operation completed operation not completed

CCR [5-7] - reserved -

Address Module Command Register (ACR)

ACR[0-1] run modes 0 0 reset

0 1 running
1 0 hit

1 1 wait

ACR [2] reset control 0 run (or hit or wait)
1 reset

ACR[3] cache indicator 0 TCO empty

1 TCO not empty
ACR [4] mode 0 uncomplicated addresses

1 complicated addresses
ACR [5-7] - reserved -

Stack Module Command Register (SCR)

0 1

SCR [0] error

SCR[I] debug

SCR[2] read

SCR [3] write

SCR [4] operation completed

SCR [5] beginning of address

SCR [6] next address ready
SCR [7] - reserved -

normal

operation not completed

not beginning of address

next addressnot ready



4.3. SOFTWARE OPERATION 59

The Keypad

Pack

Digit

Word

Clear

Next

Read

Write

Table 4.3: Normal mode screen functions.

Hex digits that are entered at the cursor location in either the primary

window (normal mode) or the secondary window (debug mode).

Move the cursor back one hex digit.

Move the cursor forward one hex digit.

Move the cursor to the first digit of the next word.

Zero the entire field that the cursor is currently in.

Move the cursor tO the next field (i.e., either address, mask, or data

fields).

Read the selected memory address in normal (associative) mode.

The '_vrite" control panel will appear in the secondary window:

Debug

Quit

Do you wish to write the SDM address as data?

(Yes) (No)

I

Yes the "memory address" is copied to 'data' and the SDM write pro-

ceeds normally.

No SDM write proceeds normally.

Setup debug-mode screen configuration (see Figures 4.10, 4.11) and enter

debug mode.

Exit the program. Confirmation with a left click is required.



6O CHAPTER 4. SOFTWARE DESIGN

Table 4.4:Debug mode screenfunctions.

Memory debug mode

Keypad Same as for normal mode but the only field that can be typed into is "debug

memory address."

Read Read memory location in debug (non-associative mode).

Register Switch to register debug mode (Figure 4.11).

Normal Switch to normal mode (Figure 4.5).

Quit Exit the program. Confirmation with a left click is required.

Register debug mode

The lower left control panel allows the user to select the register to be read.

Read

Memory

Normal

Quit

Read the register value.

Switch to memory debug mode (Figure 4.10).

Switch to normal mode (Figure 4.5).

Exit the program. Confirmation with a left click is required.



4.3. SOFTWARE OPERATION 61

SParse Distributed
!

Memo_

Hamming Radius:

Solution Threshold:

[12]

[1] oll

Mode: Normal

<Information Panel>

Memow Address
0_000000 00000000 00000000

00000000 00000000 00000000

MaS_o000000 00000000 00000000

00000000 00000000 00000000

Datao0000000 00000000 00000000

00000000 00000000 00000000

00000000

00000000

00000000

00000000

00000000

00000000
<Primary Panel>

<Secondary Panel>

CO Q CO CE)C,,c,)
0 Q Q Q (_ Digit_)

C) 0 CO CO two,,)
CO CO CO CD cc,.,)

cLower Left Panel> (_ Next ) <Lower Right Panel>

Figure 4.5: Normal mode screen.



62 CHAPTER 4. SOFTWARE DESIGN

Command

Slider
Radius= Value

of RadiusSlider

N

Slider

N

L] Threshold. Value of I

Threshold Slider I

Keypad
Event Y Process Keypad Update Current

Event Input Field

N

Addr -'_ CAR
Mask -.p. CMR
Radius-I=" CLR

H updm IData <1-COR 'Data' Field I

XCR _ CCR
Write Addr _ CAR

Address Mask_ CMRRadius CLR

pee Figure 4.12 I

[See Figure 4.1:t

Figure 4.6: Process normal mode command.



4.3. SOFTWARE OPERATION 63

WAIT FOR
Y

EXEL"U'ITv'EDATA

WAH' FOR [_

Figure 4.7: Controller module operation.



64 CHAPTER 4. SOFTWARE, DESIGN

WAIT FOR DATA FROM

COl_rrRoI._

Y

N

WAIT FOR CONTROLLER

TO READ DATA

Figure 4.8: Address module operation.



4.3. SOFTWARE OPERATION 65

WAIT FOR DATA FROM

CONTROLLER

STACK

Y
:CR[1] =

Y

WAIT FOR CONTROLLER [_

WAlT FOR DATA FROM

CONTROLLER

N

N
;CR[6]

STOP

v

Figure 4.9: Stack module operation.



66 CHAPTER 4. SOFTWARE DESIGN

istributed Memory

Hamming Radius: [12]

Solution Threshold: [1]

0

oll
]5O

p2

Mode: Debug

MemowAddr_s
0_000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

M_J_0000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

Dat_0000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

DebugMemoryAddress
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

DebugD_a
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

Q 0 Q Q ( Back)
Q Q Q O c o,o,,)
Q O Q O CW°rcI_
O O Q O CClear_

Figure 4.10: Memory debug mode screen.



4.3. SOFTWARE OPERATION

Sparse Distributed Memory

67

Hamming Radius:

Solution Threshold:

[12]

[1]

0

011

Mode: Debug

MemorvAddress
0_000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

Mas_o000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

Datao0000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

Register: CAR

00000000

00000000

00000000 00000000 00000000

00000000 00000000 00000000

[] CCR []CAR []COR []CLR

[] CMR []ARAR []ACR [] BUFFER

[]ATCO [] ALR [] AMR []ATR

[] FIFO [] SCR [] SAR [] SDR

I II I

Figure 4.11: Register debug mode screen.



68 CHAPTER 4. SOFTWARE DESIGN

Keypad
Event

Y J Proc.sKeyp. _ _1

7 Event Update"Debug _,_
Memory Address"

Fk_l

XCR _ CCR

CDAR

XCR _ CCR

Is. Figure 4.4 I

Figure 4.12: Process memory debug command.



4.3. SOFTWARE OPERATION 69

Update "Register"
Field

N

ConvertRegisterto
Oebug..Addr

XCR -----_. CCR

Oebug_Addr--_ CDAR

XCR-_ CCR I Oe_0,__COORI

"Register"
Field

} See Figure4.12 I

I s. Figure4.41

Y

Figure 4.13: Process register debug command.



70 CHAPTER 4. SOFTWARE DESIGN

4.4 Summary

The bulk of the operations of the SDM are governed by software. The executive software,

written in C, runs on a Sun workstation and provides an interface to users.

The internal operation of the control and stack modules are governed by software

written in Motorola 68000 family assembly language.

Though not as fast as a custom designed hardware implementation would be, the

software implementation is easy to modify and meets the performance specifications of

50 operations (reads or writes) per second.



Appendix A

Stack and Controller memory

maps and assembly language

code

This appendix gives the breakdown of the Stack and Controller memory maps, plus a

listing and explanation of the assembly language code for each module.

The Stack module is implemented using a Plessey 68-12 board (68000 processor), and

the Controller module is implemented using a Plessey 68-22 board (68020 processor).

A.1 Stack Module

A.I.1 Stack memory map

This section explains in detail the breakdown of the 4MB of Stack DPlt for software

and data, the use of SRAM for storage of local data, and the addresses used in the I/O

address space (see Figure A.1).

DPR (Dual Ported Ram)

The DPR houses the folds (SDM locations), the SDR (Stack Data Register), the SAR

(Stack Address Register), the Accumulator register, and the Stack software. See Fig-
ure A.2.

71



72 APPENDIX A. MEMORY MAPS AND LANGUAGE CODE

SRAM

USER DEFINED

DPR (4MB)

USER DEFINED

SYSTEM EPROM

I/0 ADDRESS SPACE

USER DEFINED

$000 000

$003 FFF

$004 000

$1FF FFF

$200 000

$7FF FFF

$800 ooo

$EFF FFF

SFO0 000

SFOF FFF

$F10 000

$FIF FFF

$F20 000

$FFF FFF

Figure A.h Stack module memory map.



A.I. STACK MODULE 73

1. Folds:

2MB fold = 8,000 locations (8,000 * 256 * 8 = 2MB)

Each location = 64 • 32-bit memory slots = 256 bytes

Fold begins: $400 000, fold ends: $600 000

2. SDR (StackData Register):

SDR = 64 • 32-bitslots= 256 bytes

Fold begins: $600 100, fold ends: $600 200

3. SAR (Stack Address Register):

SAR = 32 bits = 4 Bytes

Fold begins: $600 210, fold ends: $600 214

4. ACCUMULATOR:

ACCUM = 128 * 32-bit slots = 512 bytes

Fold begins: $600 300, fold ends: $600 500

5. PROGRAM:

Software:

Fold begins: $601 000, fold ends: $TFF FFF

SRAM

The SRAM isused to storefrequentlyused routinesand localvariables.At presentit

isused for storageof the Stack module Control Register:

$0 = copy of Control Register

(The Control Register itself is located at $F12 001 and is read-only).

I/O Address Space

At the moment, the stacksoftwareonly accessesthe 68-12 ControlRegister(atlocation

$F12 001).



74 APPENDIX A. MEMORY MAPS AND LANGUAGE CODE

$400 000

FOLD

(2MB)

SDR (256 bytes)

SAR (4 bytes)

ACCUMULATOR (512 bytes)

STACK

SOFTWARE

$600 000

$600 100

$600 200

$600 210

$600 214

$600 3OO

$600 500

$601 000

$TFF FFF

Figure A.2: Memory map for the Stack module DPR.



A.1. STACK MODULE 75

A.1.2 Stack module code

1. MOVE.B #$FF, $0 clear SCR

2. MOVE.B $0, $F12001 ($0 = copy ofSCR = $F12001)

3. (1) BTST.B #6, $0 READY flag
4. BNE.B (1)

5. BTST.B #1, $0 debug/normal?

6. BNE.B (I)

7. (2) BSET.B #4, $0 reset op. completed flag
8. MOVE.B $0, $F12001

9. MOVE.L $600210, DO get SDM address
10. MULU DO, $40 multiply by 64

11. MOVE.L DO, $600210

12. BTST.B #2, $0 READ flag

13. BNE.B (6) WRITE
14. BTST.B #5, $0 start of read block?

15. BNE.B (4) No

16. CLR.L D1

17. MOVE #128, D1 ACCUM. = 128 * 32-bits

18. MOVEA.L #$600300, A0 get accumulator address

19. (3) CLR.L (A0)+ clear accumulator
20. SUBQ #1, D1

21. BNE.B (3)

22. (4) CLR.LD2

23. MOVE #128, D2

24. MOVEA.L $600210, A2 SAR

25. MOVEA.L #$600300, A3 ACCUMULATOR

26. (5) CLR.LD3
27. ADD.W (A2)+, D3 add data

28. ADD.L D3, (A3)+ update accumulator

29. SUBQ #1, D2

30. BNE.B (5)

31. BCLR.B #4, $0

32. MOVE.B $0, $FI2001 op. finished

33. (6) BTST.B #6, $0

34. BEQ.B (1) READ op. completed

35. BTST.B #4, $0

36. BEQ.B (2) next address ready!
37. BRA (6) wait for next address

38. CLR.L D4 (WRITE)
39. MOVE #64, D4 SDR = $64 * 4 * 85 bits

40. MOVEA.L $600210, A3 get SDM address

41. MOVEA.L #$600200, A4 get SDR address



76 APPENDIX A. MEMORY MAPS AND LANGUAGE CODE

42. (7) CLR.LD4

43. ADD.L (A4)+, D4
44. ADD.L D4, (A3)+

45. SUBQ #1, D4

46. BNE (7)

47. BCLR.B #4, $0
48. MOVE.B $0, $F12001

49. (8) BTST.B #6, $0

50. BEQ.B (1)
51. BTST.B #4, $0

52. BEQ.B (2)

53. BRA (8)

op. complete

WRITE op. complete!

next address ready!
wait for next address



A.1. STACK MODULE 7,"

A.1.3 Explanation of code

Line # Explanation

5, 6

7, 8
9

10, 11

12, 13

14, 15

16-21

22-30

31, 32

33, 34

35-37

38-46

47, 48

49, 50

51-53

SCR is initialized to SFF (all bits = 1);

wait for READY signal fxom Controller;

(the Controller signals the Stack by clearing SCR[6])

find out if the operation is normal or debug;

(check SCK[1]; if set --. debug (wait)

if clear _ normal (continue))

reset op. completed flag (SCR[4] = 1);

get SDM address (14-bit);
convert it to a 20-bit address

find out if op. is a READ (test SCR[2]d; if set --, WRITE

if clear -_ continue)

start of read block? (testSCR[5]; if set --* normM READ

if clear -_ clear accumulator)

clear accumulator;

SDM READ (read one SDM location and add it to the accumulator;

one location = 128 * 16-bit words)

declare read operation finished (dear SCR[4])

is READ completed? i.e., all selected SDM locations read? (test SCR[6];
if clear --* finished --, wait for next Controller command

if set _ still more locations to be read --+ continue)

is next address ready? (test SCR[4];

if clear --, next address ready --* fetch it

if set _ address not ready ---, wait for it)

SDM WR/TE (write contents of SDR to ONE SDM location;

one data location = 64 • 32-bit words)

declare read operation finished (clear SCR[4])

is WRITE completed? i.e., all selected SDM locations written?

(test SCR[6]; if clear --* tinished --, wait for next Controller command

if set --, more locations to be written --, continue)

is next address ready? (test SCR[4];

if clear --, next address ready --, fetch it

if set --, address not ready yet --. wait for it)



78 APPENDIX A. MEMORY MAPS AND LANGUAGE CODE

A.I.4

Data:

Address:

Use of 68000 registers

DO holds SDM address

D1 counter for the accumulator clearing function

D2 counter for adding SDM data to accumulator locations (READ)

D3 holds SDM data temporarily during an SDM READ

D4 counter for writing data from SDR to the folds

A0 holds accumulator addresses while accumulator is being cleared

A1 holds current address of fold during a READ

A2 holds current accumulator address during a READ

A3 holds current address of fold during a WRITE

A4 holds current SDR address during a WRITE

A.2 Controller Module

A.2.1 Controller memory map

This section explains the breakdown of the Controller module (68-22) address space.

Figure A.3 shows the communications paths between the Controller and the other mod-

ules. Figure A.4 shows the complete 68-22 memory map. The map can be broken down

into three sections: VME address space, DPR, and I/O.

VME address space

Figure A.5 is a breakdown of the VME address space (4GB); sections of the Address
module and Stack module memories are contained within the VME address space:

Stack module:

Address module:

fold

SDR (Stack Data Register)

SAR (Stack Address Register)
Accumulator

28 • 32-bit registers

2 MB

256 bytes

4 bytes

512 bytes

112 bytes

DPR

The 4MB DPR willcontainthe Controllersoftwareand data. FigureA.6 outlinesthe

breakdown of the ControllerDPR.



A.2. CONTROLLER MODULE 79

EXECUTIVE

MODULE

SCSI bus

commands ->

<- data ->

CONTROLLER

MODULE

l
I VME bus

I

commands->

I <- data ->

I_

STACK

MODULE

commands_ I
I I
V I

I
data -> ADDRESS

MODULE

Figure A.3: Communications paths between Control module and the rest of the system.



80 APPENDIX A. MEMORY MAPS AND LANGUAGE CODE

EPROM

SCSI Controller

1K SCSI FIO Buffer

RTC

DUART I Timer

(RS232 ports + clock)

$000 0000

$002 0000

$003 0000

$004 0000

$006 0000

$200 0000

$400 0000

VMEbus address space

(4GB)

4MB DPR

$800 0000

Figure A.4: Controller module memory map.



A.2. CONTROLLER MODULE 81

I I

I I

1MB I
I I
V I"

I
4MB

I
v

_DRESS MOD_E

REGISTERS

ooo

°.o

FOLD

STACK MODULE

_GIST_S

oo,

oo,

$000 0000

$010 0000

$040 0000

$060 0000

$070 0000

$400 0oo0

(VHE base address - $400 0000)

STACK MODULE _GIS_RS:

STACK DATA _GIST_

STACK _DRESS REGISTER

ACCU_ATOK

o°o

• .°

$060 0000

$060 oi0o

$060 0200

$060 0210

$060 0214

$060 0300

$060 0500

$070 0000

Figure A.5: Breakdown of the VME Address Space (4GB).



82 APPENDIX A. MEMORY MAPS AND LANGUAGE CODE

CCR

-l

CLR

CDAR

CAR

CMR

CDR

CDDR

CONTROLLER

LOCAL DATA

CONTROLLER

SOFTWARE

$0800 0000

$0800 0001

$0800 0002

$0800 0003

$0800 0004

$0800 0008

$0800 0010

$0800 0030

$0800 0040

$0800 0060

$0800 0100

$0800 0200

$0800 0300

$0800 0500

$0810 0000

$0810 0100

$0840 0000

Figure A.6: Breakdown of Controller DPR.



A.2. CONTROLLER MODULE 83

I/O

The VME bus has been explained above; there remains the SCSI interface to describe.

The SCSI is controlled by reading and writing the registers listed in Figure A.7.



84 APPENDIX A. MEMORY MAPS AND LANGUAGE CODE

R/W

RIW

68-22

memory map

I I
R/N

$00020000 I I
I SCSI CTRL. I

R/W

$OOO3OOOO I I

I IK SCSI I

R/W

! FIFO Buffer I

$00040000 I I

R/W

R/W

RIW

R/W

RIW

I

I Data Register

I

[ Command Register

I
I

I

I

Auxiliary Status

ID Register

Interrupt Register

Source ID

Diagnostic Status

Transfer Count (MSB)

I
[ Transfer Count

I
I

I

[ Transfer Count

I $20000
I

I $20001
I

.... I $20002
Control Register I

.... I $20003
Destination ID I

$20004

$20005

$20006

$20007

$20008

$20009

I $2000C

I

I $2000D
Transfer Count (LSB) I

I $2000E

I

I I $2000F

I Reserved I

I I

Figure A.7: SCSI Registers.

R

R

R

R

R

|



A.2. CONTROLLER MODULE

A.2.2 Controller module code

85

SCSI_WRITE

LOOP SCSI_READ

coPy (CCR, SR)

CMP (SR[1], 1)
BEQ DEBUG

NORMAL SCSI_READ

WRITE

ADDRESS

FINISD

DEBUG

EXIT

VME_WRITE

CMP (SKI3], 1)
BNEQ ADDRESS

SCSI_READ

VME_WRITE

VME_READ

COPY (CCR, SR)
CMP (SR[5], I)
BNEQ ADDRESS

VME_READ
VME_WRITE

CMP (SCR[6], 1)
BNEQ ADDRESS

CMP (SCR[2], 1)
BNEQ EXIT
VME_READ

SCSI_WRITE

BRA EXIT

VME_WRITE

SCSI_READ

VME_READ

MOVE (#1, SR[4])

COPY (SR, CCR)
SCSI_WRITE

BRA LOOP

;"READY" signal -- Executive

;CCR -- XCR

;copy into 68-22 status register

; debug or normal mode?

;CCR .- XCR

;CAR ,- ADDR

;CMR .- MASK

;CLR ,--RADIUS

;CCR -- ACR

;CAR --.AAR

;CMR _ AMR

;CLR --*ALR

;CCR ---,SCR

; SDM WRITE?

;fetch addresses from ADDRESS module

;CDR ,--- DATA

; CDR -- SDR

;CCR ,- ACR

;TCO not empty?

;not yet!

;BUFF .--ATCO

;BUFF _ SAR

;addressbufferempty?

; SDM READ?

;CDR ,--SDR

;CDR ---.DATA

;CCR -. ACR

;CCR -, ACR

;CDAR ,---D_ADDR

;read (CDAR, CDDR)

;debug data isready

;CDDR ---,D_DATA





Bibliography

[1]

[2]

[3]

[4]

P. A. Chou. The capacity of the Kanerva associative memory. August 1987. Sub-

mitted for possible publication to IEEE Transactions on Information Theory.

J. J. Hopfield. Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences, USA,

79:2554-2558, April 1982.

P. Kanerva. Self-propagating search: A unified theory of memory. Technical Re-

port CSLI-84-7, Stanford Center for the Study of Language and Information, March

1984.

J. D. Keeler. Comparison between Sparsely Distributed Memory and Hopfield-type

Neural Network Models. Technical Report RIACS TR 86.31, NASA Research Insti-

tute for Advanced Computer Science, Mountain View, CA, December 1986.

PR{_0_)ING PAO_ 8L4NK NOT FIL_{ZD

87

p_m1_kLY _




